

IARPA's SMART ePANTS Program: Fashioning Electronics into Textiles

Dawson Cagle, Ph.D. | IARPA Program Manager | October 31, 2023

Intelligence Advanced Research Projects Activity

 I A R P A

 Creating Advantage through Research and Technology

15 YEAF

Computation: Engineering that Permeates our Lives

Wearable Computers: An Evolutionary Process

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

Pizzeria

Parking

The Need for Computers in Textiles Exists

but most regular consumers don't want to buy a \$500 shirt that you can't wash

To Expand the Market, We Need Electronics that act like clothing, not "pucks" of electronics

Components Need for Active Smart Textiles (ASTs)

Interconnects and Haptics

How we can make it happen

<u>SMART ePANTS</u>

WEAVING ELECTRONICS INTO TEXTILES

Fashioning Electronics into Textiles

- The Intelligence Community and other US Government agencies need wearable electronics that include effective audio, visual and/or location sensing capabilities
 - Hands-free operation and comfortable wear minimizes errors and accidents
 - Applications in law enforcement and international weapons inspections

Program Phases

Phase 1: BUILD IT 18 Months

Phase 2: WEAR IT 12 Months

Phase 3: WASH IT 12 Months

- Performer develops sensor(s) and reference textile
- System is integrated and tested outside textile
- Reference textile is tested to determine durability metrics

- Performer integrates system into garment using reference textile
- AST is tested for performance before/after durability measurements

AST is tested for all performance and durability factors, including washing

Test & Evaluation Teams

<u>SMART ePANTS</u>

WEAVING ELECTRONICS INTO TEXTILES

SMART ePANTS Performer Teams

Fashioning Electronics into Textiles

Powerfully Smart Threads (PST)

-INTERWOVEN-

DESIGN GROUP

Video

Audio

Powerfully Smart Threads

Audio and Imaging system integrated into functional fiber

Serpentine micro-cable interconnect structure

Audio

Fabric of Things (FoT)

Fabric of Things (FoT)

leidos

- TII surface mounts to yarn's unique conductive pattern using high resolution laser ablation and micro-soldering
- Braided composite yarns comprised of individually insulated, surface metalized textile filaments combined with soft non-conductive filaments

Fiber Computers & Fabric Networks (FCFN) for Garment-based Discreet Video and Location Services

*Two additional subcontractors pending

Fiber Computer Fabric Network

Video Location

Systems Utilizing Intelligent Textiles with Unprecedented Performance (SUIT UP)

Video

Location

SUIT UP

NAUTILUS DEFENSE

ZTACH Anisotropic Conductive Epoxy enables precisely controlled electrical connections

Braided microyarns are insulated and flexible

"Segment" comprising 1 SOC and multiple heterogeneous chips, bridged to the network

BEFORE CURE **Randomly dispersed** particles

	1.14	and a	and a	10 A		100	1		
-			West,	10.535	-	-	10.00		10.00
-							-		
				-					
	1	-	1	1	1			-	1

WITHIN 10 SECONDS Conductive columns fully form and are locked in place by the curing of the polymer matrix

Networked system on a chip (SOC) units enable flexible and reconfigurable architecture optimized system performance

WITHIN 4 SECONDS

Particles start aligning due

to magnetic field exposure

Comfortable Outfits from Utilitarian Textiles for Unobtrusive Recording of Events (COUTURE)

SRI International

23

SRI International

Microphone Fiber Draw Process

Examples of Braid, Overstitch, Inlay and Bandaging

SMART ePANTS Teams

Massachusetts Institute of Technology

SRI International

<u>SMART ePANTS</u>

WEAVING ELECTRONICS INTO TEXTILES

Dawson Cagle, Ph.D. | IARPA Program Manager | (301).243.2083 | dawson.cagle@iarpa.gov

Fashioning Electronics into Textiles

Thanks For Your Interest!

Backup Slides

Sensor and Fabric Testing Sequence

Listen Testing

- 7.5 minutes of data collected every hour for 8 hours from each AST article
- Audio data is ported to a PC and converted to line-level analog input to STI meter
- Sound Pressure Level set to 69 dBa in all cases. AST angled at 0° or 45° with respect to the speaker

Sequence of AST Testing

AST = Active Smart Textile

STI = Speech Transmission Index

Time (sec)	Signal					
0 - 100	STIPA					
100 - 200	Female speech, 10 HPB sentences					
200 - 250	White noise					
250 - 350	Male speech, 10 HPB sentences					
350 - 450	STIPA					

Speaker at 1m Distance from Manikin

Look Testing

- The camera will take photographs or video of:
 - High-resolution monitor (Dell 8k)
 - 8.5" x 11" paper
- When using the monitor, T&E will vary:
 - Room lights: on vs. off
 - White vs. black background
 - Image centered on middle vs. edge of display

High-Resolution Monitor

Manikin

Locate Testing

- <u>Not Allowed</u>: GPS or intentional beacons
- <u>Allowed</u>: Onboard cameras or antennas
- T&E will travel with samples around multiple courses
 - Path confined to single floor
 - Path containing a single elevation change of 1 floor using stairs
 - Path containing multiple elevation changes using stairs
 - Path containing a single elevation change of 1 floor elevator

Ending

Point

Listen Baseline System

Audio Swatch

Audio baseline electronics includes five nodes embedded in a polymer fiber

MCU = Microcontroller

- Still photographs with the ability to store 70 pictures
- Image sensor: Omnivision, 2 MP, 1.4 x. 1.4 µm pixel size
- Lens: 40lens stackup from Arducam
- <u>Backend Electronics</u>: 2-Iane MIPI, 160 Mbits/Iane, deserializer chip, Flash and SRAM member, FPGS and MCU for processing

Camera Head

MIPI = Mobile industry processor interface FPGA = Field-programmable gate array

Locate Baseline System

• Accelerometer, gyroscope, and magnetometer data are utilized in an Error-State Extended Kalman Filter algorithms

Exterior of Internal Pant Lining

Interior of Internal Pant

Lining

