

Rise of Fluorine-Free Repellents for Industrial PFAS Elimination

Frank Keohan

Advanced Textiles

Presentation Outline

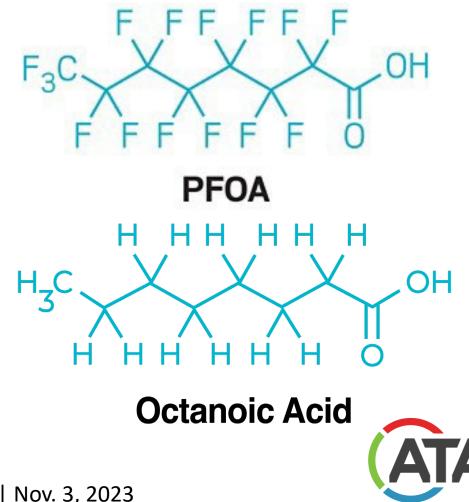
- PFAS Concerns and Regulations
- Fluorochemicals (FC) Used in Textile Industry
- FC-DWR Benefits for Repellency and Stain Resistance
- Repellency Test Methods and Standards
- Fluorine-Free Repellents
- FC and FC-Free Material Characteristics
- Repellency Properties and Processing
- FC-DWR Development for Safer Application
- Summary

Frank Keohan | Senior Technology Manager | Nov. 3, 2023

Advanced Textiles

Product Focus at Bolger & O'Hearn

- 50+ Year Old Family-Owned Company Specializing in Sustainable Textile Enhancements
- Textile Preparation and Dyeing Chemicals
 - Print Dyes
- Textile Finishes
 - Durable Water Repellents, Fire Retardants, Odor Control Treatments
- Specialty Coatings, Binders, Adhesives and Crosslinkers



PFAS and PFAS-Based Products

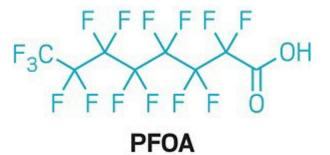
- USEPA Defines PFAS as Per- and Polyfluoroalkyl Substances
- USEPA's CompTox Chemicals Dashboard now indicates there are over 9,200 unique PFAS structures
- PFAS are commonly used around the globe in nonstick cookware, food wrappers, fire-fighting foams, water vapor breathable membranes, and waterproofing or stain-repellent chemicals.
- PFAS have been used industrially for over 70 years.
- They are widely used by many industries, including aerospace, automotive, <u>textiles</u>, construction, cosmetics, electronics, and the military.

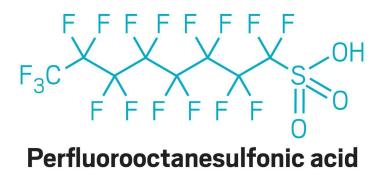
PFAS Occurrence in Common Products

- Home
 - Non-stick Cookware
 - Food packaging
 - Plumbing
 - Clothing-water, oil, stain repellent finishes, breathable membranes
 - Cosmetics
- Outdoor
 - Roof paint
 - Firefighting foam
 - Car covers, boat covers, awnings, umbrellas

Are All Fluorinated Polymers Considered PFAS Products?

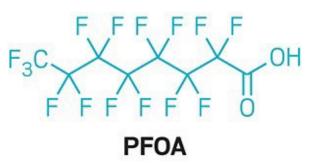
- Fluoropolymers like PTFE are technically considered PFAS
- Polymers with perfluoro groups in the backbone are considered less hazardous than perfluoroalkyl side chain types
- PTFE (Teflon) was once manufactured using PFOA but process now uses alternative fluorinated surfactants.

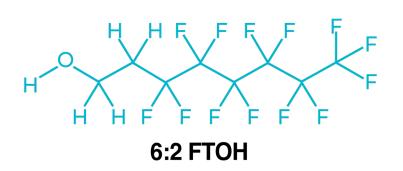

Government Regulation of PFAS


- Long Chain Vs. Short Chain Regulatory Actions
 - Voluntary Phase-Out of C8 PFAS in 2015
- US EPA, FDA, CDC, Congress
- State EPAs and Legislatures
- Foreign Regulations

US Government Regulation of PFAS

- EPA is proposing to designate two PFAS compounds PFOA) and PFOS, including their salts and structural isomers -- as hazardous substances under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund due to their hazardous nature.
- S. 2283 PFAS Free Procurement Act
 - Senate bill would prohibit any federal agency from procuring items treated with PFOA/PFOS and give preference to suppliers of goods not treated with PFAS
 - Enactment could limit demand for repellent articles
- Slotkin Amendment
 - Affects FY 2024 National Defense Authorization Act (NDAA)
 - Would institute a two-stage procurement prohibition on various products in the military sector made with certain PFAS
 - Exception for essential function

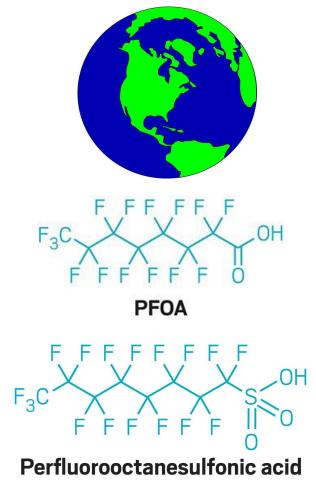




US FDA Regulation of PFAS in Food Contact

- When long-chain PFOA and PFOS were phased out under pressure from the Environmental Protection Agency, they were replaced in many products by short-chain fluorotelomers.
- Short chain (C<8) Fluorotelomers have been called the "cornerstone in replacement fluorochemistry."
- 6:2 FTOH is used in most of the plastic coatings on food wrappers and food contact materials.
- Recent FDA studies indicate that the human health risks of 6:2 FTOH have been significantly underestimated.

State Regulation of PFAS

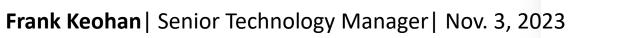

- States have taken many different approaches to regulating consumer products containing PFAS. State regulations of PFAS in consumer products have principally focused on the following product sectors thus far:
 - Food Packaging, Cosmetics or Personal Care Products, Children's products, Textiles, Fabrics, Carpets, and Upholstery
 - Many regulations center around PFOA and PFOS
- 27 States have no regulations, 4 have proposed regulations, 14 have regulations covering multiple categories, and 3 have exceptional regulations
- Maine has enacted legislation prohibiting PFAS in all products by 2030.
- Beginning on January 1, 2025, the manufacture, sale, or distribution of any textiles containing more than 100 parts per million ("ppm") of PFAS will be prohibited in California
- Ref. https://www.jdsupra.com/legalnews/pfas-update-july-2022-state-by-state-3927592

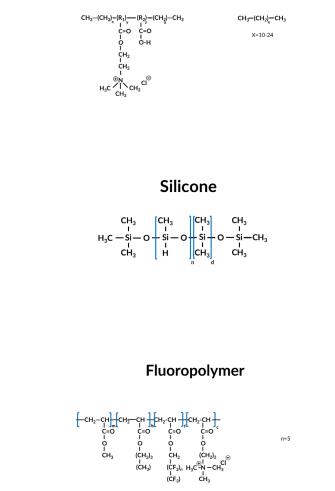
Global Regulatory Climate for PFAS

- Perfluorinated carboxylic acids (C9-14 PFCAs), their salts and precursors will be restricted in the EU/EEA from February 2023 onwards following a decision taken by the European Commission
 - Exemptions for critical applications
 - Ref. <u>https://www.jdsupra.com/legalnews/pfas-update-july-2022-state-by-state-3927592</u>
- The regulatory situation in most Asian and Middle Eastern countries remains fluid-mostly focused on eliminating PFOA and PFOS
- Japan and China have major PFAS product manufacturing companies

Independent Standard Setting Organizations and PFAS

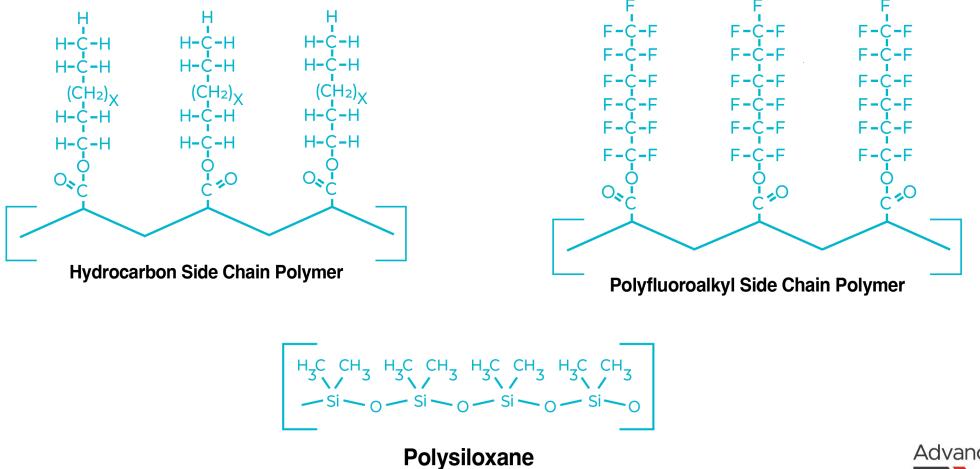
- Bluesign[®] has planned that from July 2023 all PFAS based chemicals will be phased out from the bluesign[®] FINDER and as of July 2024 all bluesign[®] APPROVED fabrics that are treated with PFAS formulations will be removed from the bluesign[®] GUIDE.
- OEKO-TEX[®] has issued a general ban on the use of perfluorinated and polyfluorinated alkyl substances (PFAS/PFC) in textiles, leather and footwear for the STANDARD 100, LEATHER STANDARD and ECO PASSPORT certifications.
- ZDHC: All the listed PFAS chemicals have been moved from Candidate to Main Manufacturing Restricted Substance List.
- Green Seal[®] is proposing to prohibit all chemicals classified as PFAS by the US EPA's comprehensive CompTox PFAS Master List database — an evolving list that aggregates PFAS based on environmental occurrence, manufacturing process data, and testing programs from agencies across the globe. (6/22, greenseal.org)
 - Ref. https://www.jdsupra.com/legalnews/pfas-update-july-2022-state-by-state-3927592


NGO Action on PFAS and Industry Reaction

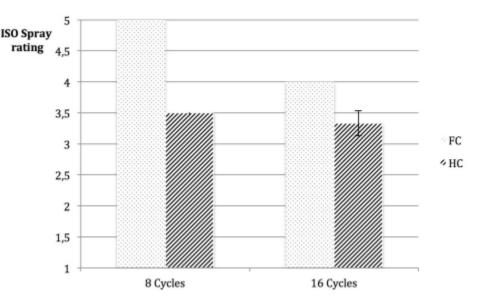

- NGOs such as Greenpeace and US PIRG have frequently spoken out about PFAS in the environment and in commercial products
 - Negative media coverage of fluorochemicals results in decreasing demand
 - Major apparel brands have removed all PFAS from their supply chains
- Some large suppliers have ceased sales of PFAS-based repellents in North America
- Consolidation in textile chemical supply industry
- Education and messaging on differences in fluorochemicals and critical uses

Repellent Chemistry

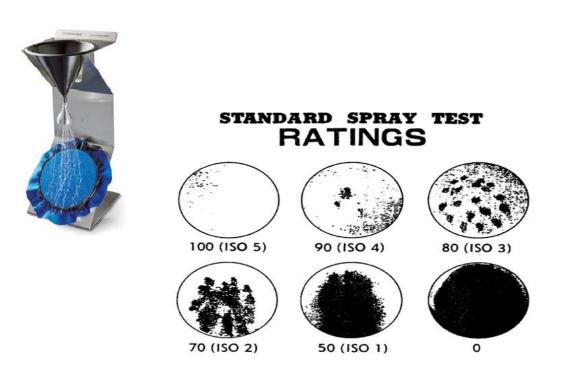
- Hydrocarbons
 - Hydrocarbon waxes and derivatives,
 - hydrophobic side chain
 - polymers, dendrimers
- Silicones
 - Coats fibers with silicone rubber,
 - water repellency, no oil repellency
- Fluoropolymers
 - Coats fibers with low surface energy fluoropolymer for highest level of repellency against water and oils



Long Chain Hydrocarbon


Critical Chemistry At Finished Fiber Surfaces

Effect of Repellent Type on UV Stability

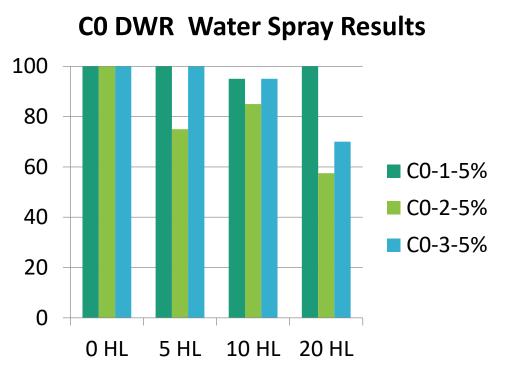

- DWR Finishes Resist Weathering Differently
 - Woven polyester substrate
 - FC and hydrocarbon-based repellents
 - Both yielded 5 spray rating initially
 - UV exposure reduces water repellency more for CO-based repellents than FC-based repellents
 - Fluorocarbon polymers are more resistant to UVinduced oxidation than those based on aliphatic hydrocarbons
 - Ref. Greener Water Repellency?, Erik Göranzon and Denize Åkerblom-Swedish School of Textiles, Univerity Boras, 2013

Textile Industry Repellency Testing

- Typical Industry Water Repellency Spec
 - Water Spray (AATCC Method 22)
 - Most common
 - Semi-quantitative
 - Rain Test (AATCC Method 35)
 - Used for tariff determination
 - More quantitative

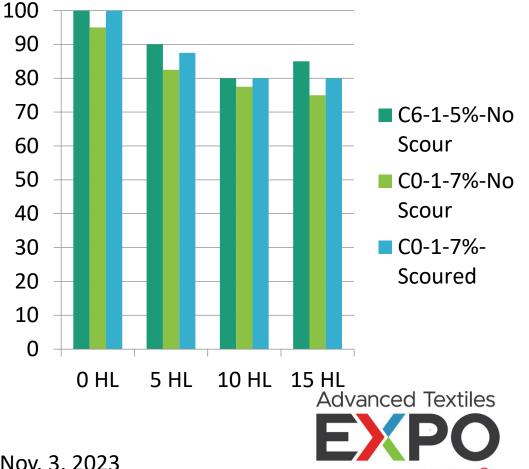
Additional Repellency Test Methods

- Aqueous Liquid Repellency (AATCC TM-193)
 - Drop penetration of water/IPA solutions
- Oil Repellency (AATCC TM-193-118)
 - Drop penetration of different surface tension organic fluids
- Impact Penetration (AATCC TM-42)
 - 500 ml, 24 in drop height, witness blotter in back
 - Measures water penetration quantitatively
- Hydrostatic Pressure Test (AATCC TM-127)
 - Quantitatively measures penetration of water under hydrostatic pressure
- Bundesmann
 - Rainstorm simulator
 - Measures repellency, absorption, and penetration

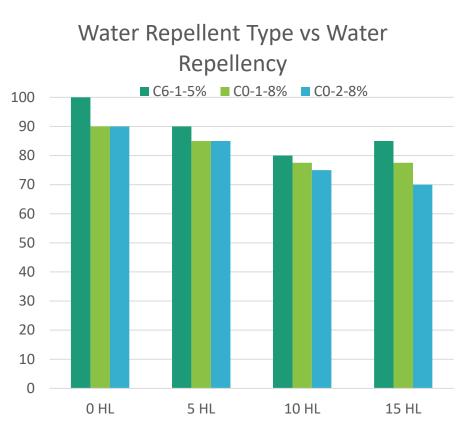


Advanced Textiles EXPO ORGANIZED BY (ATA

Effect of FFDWR Type on Repellency


- All non-fluoro repellents are <u>not</u> the same for achieving water repellency
 - Woven nylon fabric (easy to repel)
 - Applied 5% baths of three different commercial C0 DWRs and dried/cured @ 171°C for 90 sec
 - All performed well initially
 - Performance differences seen with home laundering

Effect of Pre-Finish Conditions on Repellency


- Pre-finish Textile Preparation is Important for C0 DWR 1 Performance
 - Woven polyaramide (Nomex)
 - Simple alkaline scour used on one set of CO-DWR samples
 - Without pre-scour, C0 DWR cannot match repellency performance of C6 FC Finish
 - Scour helps both initial repellency and wash durability

ORGANIZED BY

Effect of DWR Type on Repellency

- For an as-received polyaramide fiber fabric finished with different water repellents
 - C6 FC-based repellent outperforms C0-based repellents
 - C6 FC-based repellent can be used at lower add-on compared to C0-based repellents for this substrate
 - C6 FC- repellent performance less affected by substrate

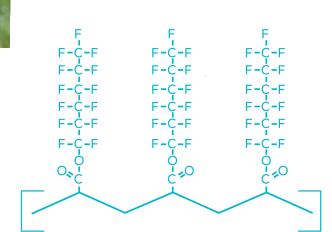
New Capabilities for FFDWRs

- Greater biochemical content
 - Enhanced sustainability through renewable feedstocks
- Lower cure temperature requirements
 - Energy savings in application process for finishing mill
- Ability to exhibit repellency after line drying
 - Energy savings in product usage for consumer
- Outstanding water impact repellency
 - Ambient temperature drying/rain impact resistance attractive for outdoor applications

FFDWRs Can Provide Outstanding Water Repellency

Critical Uses for FC-Based Repellent Finishes

- Medical PPE
 - FDA sets performance standards
- Military Apparel/Equipment
 - DoD Sets performance standards
- Chemical Manufactures & Handlers
- Energy Products Manufacture, Handling and Storage
- Emergency Responder Apparel/Equipment



Potential Ways to Reduce Hazards from PFAS

- Reduce FCs in Finish
 - Blend with FFDWR for critical applications
- Reduce waste application liquor
 - Contained spray application
- Improve adhesion to fibers
 - Introduce more crosslinking sites into polymer backbone
 - Improve adhesion promoting bath auxiliaries
- Replace common ester link of PFA group to polymer with more hydrolytically stable bonding

Polyfluoroalkyl Side Chain Polymer

Progress on PFAS-Free Oil and Water Repellents

- University of British Columbia
 - FF silicone finish provides water repellency and some oil repellency on textiles
 - Ref. www.ecotextile .com/2020081026511
- EMD-Millipore
 - Organic polysilazane coatings
 - Thermally cure into glassy coatings with resistance to water and oils
 - Best for hard surface protection
 - Ref. www.emdgroup.com/en/brands/pm/durazane.html

Summary

- PFAS Encompass a Wide Variety of Chemicals –All containing perfluoroalkyl groups
- All **PFAS** are **Not** Created Equal-they Vary in Toxicity and Bioaccumulation
- PFAS of Increasing Concern to Public and Government Regulators
- Fluorochemicals (FC) Used in Textile Industry for broad liquid repellency
- Oil Repellency still requires FCs
- FC-DWR Provide Unique Benefits for Universal Repellency and FR compatibility
- FC and FC-Free DWRs share some Material Characteristics
- Fluorine-free Repellents are very Effective for some Applications
- Lower temperature cure and ambient temperature drying possible with FFDWRs
- Repellency Dependent on Materials, Substrates and Processing
- FC-DWR Application Engineering Proposed for Safer Usage
- FC-free Oil Repellency Possible but not yet Commercially Viable

Thank You

- Frank Keohan, <u>fkeohan@bolgerohearn.com</u>
 - Bolger & O'Hearn, Inc.
 - 47 Slade Street
 - Fall River, MA 02724
 - Ph: (508) 676-1518

- Mohan Rao
- Jeff Rybka

See you next year! Advanced Textiles

ORGANIZED BY

Sept. 24–26, 2024 | Anaheim, CA USA