

Characterization of Textile-grade Hemp Fiber as a Sustainable Alternative for Industrial Textiles

Presenter: Dr. Andre West Associate Professor & Director, The Zeis Textile Extension (ZTE) Dr. Rong Yin, Assistant Professor Yali Ling, Ph.D. Student NC State Wilson College of Textiles



Zeis Textiles Extension Advanced Textiles Expo 2023





Industrial hemp is an incredibly useful plant, one said to have literally tens of thousands of applications.

Industrial hemp and marijuana are both types of cannabis that are very closely related, but there are some major differences between the plants and how they are generally grown.

Industrial hemp farmers tend to aim to grow the plants up, not out as is the case with medicinal cannabis – and the taller, the better when grown for fiber. This is because some of the great value of industrial hemp in fibre based applications is primarily in its stalk. Industrial hemp is also grown at quite high density.





Like its cousin, flax, hemp is a "bast" fiber, which means that the fiberproducing part of the plant is made up of strands that run its length and surround the woody core of the stem. It grows quickly, is naturally resistant to many insect species, and needs little water to cultivate. It also has a deep root system, which helps to reduce soil loss and erosion, and is useful in many different crop rotations. In China, the leading producer of hemp, farmers rotate it with soybeans, tobacco, wheat, and corn. Advanced Textiles

#### Harvesting





#### Retting



![](_page_5_Picture_0.jpeg)

#### **Bast V's Hurd**

#### Advanced Textiles Expo 2023

![](_page_5_Picture_3.jpeg)

Fibre from the industrial hemp plant is one of nature's wonders – it's used in everything from stuffing furnishings to high quality textiles. he image above shows a hemp stem. The outer material contains the prized bast fibers and the inner is the hurd, which is made up of short fibers.

There are three main stages of producing fiber from industrial hemp – harvesting, retting and separation.

Advanced Textiles

#### **Decortication**

![](_page_6_Picture_3.jpeg)

# Why hemp sustainable?

![](_page_8_Picture_0.jpeg)

## Hemp VS Cotton

Hemp needs very little water to grow.

![](_page_8_Figure_4.jpeg)

Cotton require twice as much water or more.

Hemp enriches the soil it was grown on.

![](_page_8_Picture_7.jpeg)

Cotton depletes the soil it was grown on.

Hemp does not require any pesticides to grow.

![](_page_8_Picture_10.jpeg)

Cotton is the highest consumer of pesticides.

Hemp produces twice as much fibers per acre.

![](_page_8_Picture_13.jpeg)

Cotton requires twice as much land.

Hemp is the strongest natural, vegan fiber.

![](_page_8_Picture_16.jpeg)

Cotton fabric tends to break down quickly.

![](_page_9_Picture_0.jpeg)

## Hemp fabrics

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_4.jpeg)

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_2.jpeg)

## Hemp fabric VS Cotton fabric for clothes

![](_page_11_Picture_1.jpeg)

#### Hemp fabric VS Cotton fabric for clothes

|               | Pros                                                                                                                                                                  | Cons                                                                                |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Hemp fabric   | <ul> <li>High tensile strength</li> <li>Abrasion-resistant</li> <li>Better air permeability and<br/>moisture permeability</li> <li>Anti-bacterial function</li> </ul> | • Stiff and scratchy                                                                |
| Cotton fabric | <ul><li>Soft and comfortable</li><li>No bad odors</li></ul>                                                                                                           | <ul><li>Fade over time</li><li>Wrinkles easily</li><li>Affected by mildew</li></ul> |

![](_page_12_Picture_0.jpeg)

# Systematic evaluation of the performance of hemp and nylon blended yarns and woven fabrics

![](_page_12_Picture_3.jpeg)

U.S. Department of Defense

Zeis Textiles Extension

![](_page_13_Picture_0.jpeg)

#### Hemp yarn production process – *flax production line*

![](_page_13_Figure_3.jpeg)

![](_page_14_Picture_0.jpeg)

#### Hemp yarn production process – cotton production line

![](_page_14_Figure_3.jpeg)

![](_page_15_Picture_1.jpeg)

#### Different types of hemp fiber

![](_page_15_Picture_3.jpeg)

![](_page_16_Picture_1.jpeg)

## Hemp fiber length

![](_page_16_Figure_3.jpeg)

![](_page_17_Picture_0.jpeg)

#### Hemp fiber length

![](_page_17_Picture_3.jpeg)

![](_page_18_Picture_0.jpeg)

#### Hemp fiber morphology

![](_page_18_Picture_3.jpeg)

![](_page_19_Picture_0.jpeg)

## Different types of nylon fiber

![](_page_19_Picture_3.jpeg)

![](_page_20_Picture_1.jpeg)

#### Nylon fiber morphology

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_6.jpeg)

![](_page_20_Picture_7.jpeg)

Advanced Textiles

#### Fiber properties

![](_page_21_Picture_3.jpeg)

#### **Hemp fiber**

Linear density:4.97 dtexDiameter:26.97 μmTenacity:35.55 cN/dtex

![](_page_21_Picture_6.jpeg)

Nylon fiberLinear density:2.32 dtexDiameter:15.05 μmTenacity:62.2 cN/dtex

![](_page_22_Picture_0.jpeg)

#### Hemp degumming

(1) Oxygen bleaching

(2) Refining

(3) Dehydration

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)

Oxygen bleaching-1

![](_page_22_Picture_9.jpeg)

Oxygen bleaching-2

![](_page_22_Picture_11.jpeg)

Softening

![](_page_22_Picture_13.jpeg)

Washing

![](_page_22_Picture_15.jpeg)

**Oxygen bleaching-3** 

![](_page_22_Picture_17.jpeg)

Dehydration

![](_page_22_Picture_18.jpeg)

![](_page_22_Picture_19.jpeg)

Fiber after dehydration

**Degummed fibers** 

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

#### Hemp fiber before degumming

#### **Degummed hemp fiber**

![](_page_24_Picture_0.jpeg)

#### Three blends ratio yarn

| No. | Abbreviation | Fiber blend ratio   | Target yarn count |
|-----|--------------|---------------------|-------------------|
| 1   | 69H/31N      | 69% hemp/ 31% nylon | Ne 30             |
| 2   | 47H/53N      | 47% hemp/ 53% nylon | Ne 30             |
| 3   | 31H/69N      | 31% hemp/ 69% nylon | Ne 30             |

Advanced Textiles

![](_page_25_Picture_2.jpeg)

![](_page_26_Picture_0.jpeg)

#### **Carding Process**

![](_page_26_Picture_3.jpeg)

![](_page_27_Picture_0.jpeg)

#### Yarn testing method

| Yarn Property      | Instrument     | Standard   |
|--------------------|----------------|------------|
| Linear Density     | Skein Winder   | ASTM D1907 |
| Evenness           |                |            |
| Hairiness          | Uster Tester 5 | ASTM D1425 |
| Tensile Properties | MTS Q test/5   | ASTM D2256 |

![](_page_28_Picture_0.jpeg)

#### Fabric testing method

| Fabric Property       | Instrument                                                              | Standard          |  |
|-----------------------|-------------------------------------------------------------------------|-------------------|--|
| Tensile strength      | MTS Q Test/5                                                            | ASTM D5034        |  |
| Dimensional stability | GE APPLIANCES Washer<br>Kenmore Dryer                                   | AATCC TM135-2018t |  |
| Abrasion resistance   | Maxi Martindale 1609 Abrasion Tester                                    | ASTM D4966        |  |
| Pilling resistance    | Maxi Martindale 1609 Abrasion Tester<br>Apparatus for Fabric Evaluation | ASTM D4970        |  |

![](_page_29_Picture_0.jpeg)

### SEM micrographs of yarn

![](_page_29_Figure_3.jpeg)

(a) 69H/31N

(b) 47H/53N

(c) 31H/69N

Yarn with most hemp fibers has the most hairiness sticking from its main body, and the yarn with least hemp fibers has the least hairiness.

![](_page_30_Picture_0.jpeg)

#### Yarn tensile property

![](_page_30_Figure_3.jpeg)

- As the hemp fiber content decreases, the yarn strength increases.
- Yarn tenacity under wet conditions is lower than that under standard condition.
- Yarn elongation, it increases with the reduction of hemp fiber content.

![](_page_31_Picture_1.jpeg)

#### Yarn hairiness and evenness

8 7 6 6 6 9H/31N 47H/53N 31H/69N

| Evenness   | 69H/31N | 47H/53N | 31H/69N |
|------------|---------|---------|---------|
| CVm (%)    | 38.9    | 34.9    | 30.6    |
| Thin -30%  | 9215    | 7696    | 5969    |
| Thin -40%  | 7371    | 5320    | 3502    |
| Thick +35% | 5469    | 4560    | 3581    |
| Thick +50% | 3829    | 2986    | 2210    |
| Neps +140% | 6413    | 4755    | 3113    |
| Neps +200% | 3312    | 2413    | 1545    |

- As the percentage of hemp fiber increases, the blended yarns become uneven and have more imperfections.
- A higher hemp fiber content also leads to an increase in yarn hairiness.

![](_page_32_Picture_0.jpeg)

#### Tensile strength and Pilling resistance of woven fabric

![](_page_32_Figure_3.jpeg)

![](_page_32_Figure_4.jpeg)

![](_page_32_Figure_5.jpeg)

- As the hemp fiber content decreases, the fabric breaking strength becomes higher.
- With the increase of nylon content, the fabrics show better pilling resistance.

![](_page_33_Picture_0.jpeg)

#### Dimensional stability of woven fabric

| Dimensior           | nal Change         | 31H/69N | 47H/53N | 69H/31N |
|---------------------|--------------------|---------|---------|---------|
| De-sizing           | Warp direction (%) | -9.19   | -10.96  | -11.33  |
|                     | CV (%)             | [15.74] | [17.52] | [10.94] |
|                     | Fill direction (%) | -2.44   | -3.56   | -3.78   |
|                     | CV (%)             | [9.09]  | [10.67] | [10.05] |
|                     | Warp direction (%) | -2.45   | -1.56   | -4.09   |
|                     | CV (%)             | [26.53] | [89.74] | [24.45] |
| 3 laundering cycles | Fill direction (%) | -0.84   | -1.54   | -1.31   |
|                     | CV (%)             | [15.48] | [16.88] | [9.92]  |

- The size of all fabric samples changed significantly after desizing.
- Changes are not obvious after the three-laundering cycles.
- Fabric with most hemp fiber content shows the worst dimensional stability.

![](_page_34_Picture_0.jpeg)

#### Future research

![](_page_34_Picture_3.jpeg)

• Hemp fiber degumming

![](_page_34_Picture_5.jpeg)

• Hemp fiber opening

![](_page_34_Picture_7.jpeg)

• Hemp yarn spinning

![](_page_35_Picture_0.jpeg)

## Sustainable choice: hemp

Hemp Extension at NCSU

Advanced Textiles Expo 2023

![](_page_36_Picture_0.jpeg)

The future of hemp production is at a watershed moment. Restrictions on this once-stigmatized crop are being lifted around the world, and people have an increased awareness of the concerns accompanying inputintensive agriculture. There is much excitement about the sustainability potential of this fiber crop, but growing, sourcing, or wearing hemp won't be a solution in itself – it will all depend on how that hemp is grown.

## Thanks !