Evaluation and Comparison of Advanced Textile Digitization and Virtualization Technology Using Drape

Seonyoung Youn*, Dr. Kavita Mathur, Melissa Sharp, and Dr. Andre West
Ph.D. Candidate, NC State University
Nov. 2nd, 2023
I. Textile Virtualization & Current Apparel Industry

II. Textile Digitization & State-of-Art Methods

III. Evaluation of Virtualized Textiles Using Drape

IV. Our Case Study

V. Conclusion
OUTLINE

• Textile Virtualization & Current Apparel Industry

• Textile Digitization & State-of-Art Methods

• Evaluation of Virtualized Textiles Using Drape

• Our Case Study
Struggle to handle repetitive edits and corrections requested by buyers

Efficient communication & pattern modification through virtual simulation
No need physical sampling & material waste
Textile Virtualization & Apparel Industry: Manufacturing Process

Conventional Manufacturing Process

Material Sourcing & Concept Design

Pattern Design

Physical Sampling

Review

Production Sampling

Sales

4~5 Months

Digital Integrated Manufacturing Process

2~3 Weeks

Note: The video originates from a CLO 3D user demonstration
Textile Virtualization & Apparel Industry: Representation of fabrics

- Cotton-stretch
- Velvet
- 100% silk woven
- 100% wool knit
The virtual representation of fabrics

Virtualized Image

Mesh Image
Fabric Representation – Mass-Spring Model

Rectangular Mesh

- Fabric - represents a grid of mass points (mesh) & spring (connections between mass points)
- Each mass point has a position, velocity, and acceleration and responds to internal and external forces.

\[
\ddot{x} = M^{-1} \left(-\frac{\partial E}{\partial x} + F \right)
\]

\(\dot{x} \) : Geometric state of cloth
\(\ddot{x} \) : Acceleration
\(M^{-1} \) : Mass distribution matrix
\(E \) : Cloth's internal energy (scalar function of \(x \))
\(F \) : Forces acting on cloth (e.g., air-drag, internal damping)

D. Baraff and A. Witkin (1998)

Triangular Mesh

Mozafary, Vajiha, and Pedram Payvandy (2017)
Tuur Stuyck (2018)
OUTLINE

• Textile Virtualization & Current Apparel Industry

• Textile Digitization & State-of-Art Methods

• Evaluation of Virtualized Textiles Using Drape

• Our Case Study
Conventional Method of Textile Digitization

Textile Digitization Process - Overview

1. Physical Properties Data
2. Spec Data
 - Fiber components,
 - Yarn specs, etc.
3. 3D Fabric Files

Textile Digitization – Physical Property Test

Step 1: Physical testing measurements
- Weight
- Thickness
- Bending properties (warp, weft, bias) for contact distance and bending length (mm)
- Stretch properties (warp, weft, bias): stretch force at 5 points

Step 2: Measured input data into emulator

Step 3: Digitizing physical properties
- Stretch stiffness CD (g/s²)
- Stretch stiffness MD (g/s²)
- Shear stiffness (g/s²)
- Bending stiffness CD (g·mm²/s²/rad)
- Bending stiffness MD ((g·mm²/s²/rad)
- Bending stiffness B (g·mm²/s²/rad)

Step 4: ZFAB file creation (Physical property file)

Step 5: Apply ZFAB file to virtual cloth

Conventional Method of Textile Digitization

Textile Digitization – Physical Property Test

It takes about 20 minutes per one fabric sample digitization
Recently, AI-based textile digitization processes have been introduced. AI-powered textile digitization offers a straightforward and practical method to automatically digitize fabric properties based on image scanning.
State-of-Art Method of Textile Digitization

AI-Powered Textile Digitization Process

01 Capture a series of photos of the fabric surface, while moving around the fabric
02 Upload to Bandicoot’s website
03 Output 3D-ready file → design

Scan Fabric
Upload File
Grab a Coffee
Download 3D Fabric File

Takes 5 minutes per one sample!

https://textura.ai/product/
https://www.theinterline.com/2023/01/19/dpc-conversations-dave-monaghan-ceo-bandicoot-imaging/
AI-Powered Textile Digitization

- There is no need for physical testing hardware or equipment.
- Input known parameters, such as density or % of elastane; the AI technology does the rest.

The reliability of AI-powered textile digitization remains a critical consideration compared to manual physical property measurements.

https://textura.ai/product/
OUTLINE

• Textile Virtualization & Current Apparel Industry

• Textile Digitization & State-of-Art Methods

• **Evaluation of Virtualized Textiles Using Drape**

• Our Case Study
How do we evaluate the virtualized fabric?

Drape

- The drape is a unique behavior of textile as it is a total visual expression based on its inherent mechanical and physical properties.
- The drape test can be an indicator to evaluate the simulated fabric’s performance.

https://textura.ai/product/
Virtual Textile Evaluation via Drape

Virtual Drape Test Cases

- (a) Hanging drape
- (b) Cusick’s drape
- (c) Modified Cusick’s drape
- (d) Boundary vector of (c)

FIGURE 1. Comparison of simulated hanging drape, Cusick’s drape, and our modified Cusick’s drape.

- (a) Scanning the 3D model.
- (b) Fitting a Bézier spline.

FIGURE 11. Extracting the boundary vector from the real fabric specimen.

✓ Key takeaway: There is a lack of reliability and standardized testing methods in a virtual environment.

Volume measurement
Evaluation of Virtualized Textiles Using Drape

Virtual Drape – Method Development

Compatibility with Cusick Drape's test results:
- Reliable DCs
- Accurate visual representation

Drape coefficient (DC, %) = \(\frac{A_d - A_1}{A_2 - A_1} \times 100 \)

Now, one can evaluate the accuracy of virtualized fabric using this method.
(Cylinder height: 100 mm, Ring diameter 240 or 300 mm)

OUTLINE

• Textile Virtualization & Current Apparel Industry
• Textile Digitization & State-of-Art Method
• Evaluation of Virtualized Textiles Using Drape
• Our Case Study
Evaluation of Virtualized Textiles Using Drape

Case study: Physical vs. ATextile Digitization

Physical VS. AI-Textile digitization

2) Scan

3) Upload scanned image (Textura)

4) Download AI-digitized physical property file

Simulation

2) Physical property tests (ST or CLO Kit)

3) Input test data (Emulator)

4) Create digitized physical property file

5 polyester-spandex jersey knits & 3 woven
Variable spandex content and areal density

Case study: Physical vs. AI Textile Digitization

Woven Simulation Example

<table>
<thead>
<tr>
<th>Cusick Drape (Real)</th>
<th>Physical Test-based (PT)</th>
<th>AI-based (AI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC: 47%</td>
<td>DC: 52%</td>
<td>DC: 45%</td>
</tr>
</tbody>
</table>

DC: 47% DC: 52% DC: 45%
Case study: Physical vs. ATextile Digitization

Knit Simulation Example

Cusick Drape

Physical Test-based (PT)

AI-based (AI)

PT

AI

DC: 12%

DC: 16%

DC: 27%

Evaluation of Virtualized Textiles Using Drape

Case study: Physical vs. ATextile Digitization

3D Clothing Example

Physical Test measurement based simulation

AI-textile digitization based simulation

Conclusion

- **Evidenced The potential of AI-powered digitization for rapid prototyping**
 - Al-based garment simulation could be effective and practical for evaluating silhouette and fits during the apparel manufacturing, although some limitations and challenges must be addressed.

- **Some Limitations of AI-powered digitization**
 - The AI model better simulates woven fabrics than knit fabrics for fabric drapes in this study
 - It might be because the AI model approximates yarn and fabric parameters for full-scale fabric as a regularly repeating pattern based on the scanned textile.
 - We observed differences in drape behavior and virtualized garments.
 - The complexity of garment simulation may be influenced by garment’s structure, stitching, and other factors.
Acknowledgment

The authors would like to thank the North Carolina Defense Manufacturing Community Support Program (DMCSP) from the Department of Defense (DoD) for providing student support, as well as Zeis Textiles Extension for granting access to the Physical Testing Lab and Wilson College of Textiles for providing access to Clo 3d software and its fabric kit. The authors would also like to acknowledge Alejandro Rodríguez, Gabriel Cirio, and Alicia Nicas from the optical and physics research team at SEDDI for their insightful discussions. Special thanks to Graham Sullivan and Bruce Wright for introducing us to the latest technology.
Thank you! Any Questions?
syoun@ncsu.edu
See you next year!

Advanced Textiles EXPO

ORGANIZED BY ATA

Sept. 24–26, 2024 | Anaheim, CA USA