Welcome to

EXAMPLE A CONFERENCE AVAILABLE AVA

Workshop

Crafting Biomaterials for Interactive Interfaces

PhD Candidate Eldy Lazaro

eldylazaro@colorado.edu @sust_ainable

Sep. 2024

Workshop

Crafting Biomaterials for Interactive Interfaces

PhD Candidate Eldy Lazaro

eldylazaro@colorado.edu @sust_ainable

Sep. 2024

What are biomaterials?

Bio-based:

derived or sourced from renewable biological matter, including plants, animals, bacteria, fungi, and other life forms.

Biodegradable:

naturally* break down into biomass and carbon dioxide within a timeframe of weeks to months, usually without leaving toxic residues.

*Some biomaterials may require specific environmental conditions for effective degradation.

Compostable:

break down into organic matter in a composting environment, ideally without the need for industrial facilities.

Schedule

- 9:00 Introduction & Overview
- 9:05 Hands-on: Making bioplastics and biofoams
- 9:45 Short break, clean up
- 9:50 Loom Making with Bioplastics
- 10:10 Demo: Interactive Bioplastic Loom
- 10:20 Presentation on Biomaterials for Interactive Interfaces
- 10:30 Group discussion on Biomaterials in Smart Textiles
- 10:45 Show and Tell, Closing notes

Hands-on: Making bioplastics and *biofoams

Materials	Tools	
Agar-agar	Petri dishes	Microwave
Glycerin	Non-stick mat	Electric Kettle
Water	Stirring sticks	Scale
*Liquid soap	Microwave	*Milk frother handheld
Add-ons:	Cups	
Food dye	Syringes	

Sensitive pigments

Agar-agar (biopolymer)

Agar is a jelly-like material made of polysaccharides biopolymer that are extracted from cell walls of some red algae species [1].

It is commonly used as a food gelling agent or thickening, and a vegan substitute for gelatin.

Agar – Bioplastic

Recipe adapted from open-source bioplastic recipes*

Ingredients

- 1g agar
- 0.5mL glycerin
 Optionally:
 0.25mL for more brittleness
 0.75mL for more flexibility
- 25mL water

Add on

- 2 drops of food dye
- 0.25g (0.01oz) thermochromic or photochromic powder

Instructions

- **Prepare Syringes:** Fill with glycerin and water.
- Weigh Agar: Use the scale.
- **Mix:** Combine agar, glycerin, and hot water in a cup. Stir until well combined.
- **Optional:** Add food coloring or thermo/photochromic powders.
- Heat: Microwave for 10 seconds. Remove, stir, and repeat this heating and stirring process 3 times
- **Pour:** Carefully pour the mixture to a petri dish in a single stream.
- **Dry:** Leave uncovered at room temperature or use a dehydrator on low.
 - Drying may take 3-4 days.
 - Peel off when it feels at room temperature to the touch; if cold, it's not dry yet.

Agar – Biofoam

Recipe adapted from open-source bioplastic recipes*

Ingredients

- 1g agar
- 0.75mL glycerin
 Optionally:
 1mL for a bit more flexibility
- 25mL water
- 2-3 drops liquid soap

Add on

- 2 drops of food dye
- 0.25g (0.01oz) thermochromic or photochromic powder

Instructions

- **Prepare Syringes:** Fill with glycerin and water.
- Weigh Agar: Use the scale.
- **Mix:** Combine agar, glycerin, and hot water in a cup. Stir until well combined.
- **Optional:** Add food coloring or thermo/photochromic powders.
- Heat: Microwave for 10 seconds. Remove, stir, and repeat this heating and stirring process 3 times
- **Foam:** Add liquid soap and whisk using a milk frother handheld or electric whisk
- **Pour:** Carefully pour the mixture to a petri dish in a single stream.
- **Dry:** Leave uncovered at room temperature or use a dehydrator on low.
 - Drying may take 3-4 days.
 - Peel off when it feels at room temperature to the touch; if cold, it's not dry yet.

Gelatin-based Foam – Biofoam

Recipe from: Eldy Lazaro, Netta Ofer, Shanel Wu, Mary West, Mirela Alistar, Laura Devendorf

Ingredients

- 24g Gelatin
- 24g Glycerin
- 10g Liquid soap
- 300 ml Water

Optional

 food dye, natural pigments, thermochromic or photochromic powders

Tools

• Electric or hand whisk

Instructions

- 1. Combine gelatin, and water
- 2. Heat on a stovetop and stir until the mixture has a honey-like consistency
- 3. Add the glycerin and liquid soap
- 4. Optionally mix in food dye, natural pigment, or thermo/photochromic powders.
- 5. Turn off the stovetop and whisk until achieved a foamy mixture
- 6. Pour the mixture onto a mold or clean, flat, heat resistant surface.
- 7. Optionally use a syringe or piping bag to extrude biofoam strings (see tutorial)
- 8. Dry at room temperature
- 9. Remove the biofoam sample off of the mold or surface for use

Hands-on: step by step through documentation camera

(Streamed live)

Schedule

- 9:00 Introduction & Overview
- 9:05 Hands-on: Making bioplastics and biofoams
- 9:45 Short break, clean up
- 9:50 Loom Making with Bioplastics
- 10:10 Demo: Interactive Bioplastic Loom
- 10:20 Presentation on Biomaterials for Interactive Interfaces
- 10:30 Group discussion on Biomaterials in Smart Textiles
- 10:45 Show and Tell, Closing notes

Loom Making with Bioplastics

Materials

Bioplastic Loom

Bioplastic strips

Weaving Instructions copy

Demo: step by step through documentation camera

(Streamed live)

Loom Making with Bioplastics

https://www.trc-leiden.nl/trcneedles/techniques/weaving/tabby-weave

Loom Making with Bioplastics

Plain or Tabby Weave

https://www.trc-leiden.nl/trcneedles/techniques/weaving/tabby-weave

Lift warp (insert weft)

Lower warp

Demo: step by step through documentation camera

(Streamed live)

TRY THIS.

Cut out the paper loom on the left and we'll weave a draft together. Lift the black warps and insert the wefts as indicated below

Plain or Tabby Weave

Twill Weave

Lower warp

TRY THIS NEXT

Weave this draft to make two layers at once. Using alternating colors in the weft can help you understand how it works

Weaving as Material Calculus. Laura Devendorf & Irene Posch. adacad.org

Schedule

- 9:00 Introduction & Overview
- 9:05 Hands-on: Making bioplastics and biofoams
- 9:45 Short break, clean up
- 9:50 Loom Making with Bioplastics
- 10:10 Demo: Interactive Bioplastic Loom
- 10:20 Presentation on Biomaterials for Interactive Interfaces
- 10:30 Group discussion on Biomaterials in Smart Textiles
- 10:45 Show and Tell, Closing notes

Demo: Interactive Bioplastic Loom

(Streamed live)

Biomaterials for Interactive Interfaces

Myco-electronics

Eldy S. Lazaro Vasquez and Katia Vega. 2019. From plastic to biomaterials: prototyping DIY electronics with mycelium. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (UbiComp/ISWC '19 Adjunct). <u>https://doi.org/10.1145/3341162.3343808</u>

zaro, 2020 @080

HUMAN-COMPUTER

Smart Textiles Interactive Objects

Myco-electronics

Eldy S. Lazaro Vasquez and Katia Vega. 2019. From plastic to biomaterials: prototyping DIY electronics with mycelium. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (UbiComp/ISWC '19 Adjunct). https://doi.org/10.1145/3341162.3343808

HUMAN-COMPUTER

Smart Textiles Interactive Objects

Myco-electronics

Eldy S. Lazaro Vasquez and Katia Vega. 2019. Myco-accessories: sustainable wearables with biodegradable materials. In Proceedings of the 2019 ACM International Symposium on Wearable Computers (ISWC '19). <u>https://doi-org.colorado.idm.oclc.org/10.1145/3341163.3346938</u>

Chameleon accessories

Exploring Biofoam as a Material for Tangible Interaction. In Proceedings of the 2022 ACM Designing Interactive Systems Conference (DIS '22). Association for Computing Machinery, New York, NY, USA, 1525–1539. https://doi.org/10.1145/3532106.3533494

Chameleon accessories

Chameleon accessories

Smart biofoam

At the end of life, biofoam can also be dissolved in warm water

The conductive fibers can be recovered with a magnet

HUMAN-COMPUTER

Smart Textiles Interactive Objects

Designing Dissolving Wearables

Lazaro Vasquez, E. S., Gabriel, L. M., Friske, M., Wu, S., De Koninck, S., Devendorf, L., & Alistar, M. (2023). Designing Dissolving Wearables. Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing, 286–290. https://doi.org/10.1145/3594739.3610781

Figure 4: "Unfolding Lace Top" swatch to test the unfolding stitch structure. a. before, and b. after dissolving the swatch in cold water.

Dissolving Wearables

Our Approach to Sustainable Smart Textiles

Open-Source Biofibers Spinning Machine

Gelatin Spinning Solutions and Biofibers Customization

Smart Textile Applications

Photosensitive gelatin biofibers through coating

Not activated

The biofibers diameter correlates with extrusion rate and collector speed

Dissolving for recycling and reharvesting

Woven moisture sensor

Dissolving for recycling and reharvesting

Dissolving for recycling and reharvesting

Dissolving for etching flexible circuits

Biofibers (top layer-weft)

Silver thread _____ (bottom layer-weft)

(2-layer structure)

Dissolving for etching flexible circuits

Etching process Speed x3

Schedule

- 9:00 Introduction & Overview
- 9:05 Hands-on: Making bioplastics and biofoams
- 9:45 Short break, clean up
- 9:50 Loom Making with Bioplastics
- 10:10 Demo: Interactive Bioplastic Loom
- 10:20 Presentation on Biomaterials for Interactive Interfaces
- 10:30 Group discussion on Biomaterials in Smart Textiles
- 10:45 Show and Tell, Closing notes

Group discussion: biomaterials use in Smart Textiles

How do you see these materials being used in smart textiles?

What other design opportunities can you imagine?

What challenges do you foresee in integrating biomaterials into smart textiles?

Thank you!

Questions?

Acknowledgements

Summer 2022: ITA, RWTH University Biofibers Spinning Machine Development Support: Miles Lewis Hand-spinning: Lily Gabriel Research assistants: Nefeli, Lily, Sophie, Lily Gabriel Research labs: Unstable Design, Living Matter, Utility Research Labs Biomaterial samples: Lily Gabriel, Mamas Leonas, NEST Studio for the Arts Video: Stefan Hermann from @CNCKitchen Material formulation advice: Philipp R. Stoessel and Carson Bruns Machine's interface development: Xin Wen Workshop preparation assistant: Lily Gabriel

PhD Candidate Eldy Lazaro

eldylazaro@colorado.edu

www.eldylazaro.com

IG: sust_ainable

Sep. 2024

Workshop

Crafting Biomaterials for Interactive Interfaces

PhD Candidate Eldy Lazaro

eldylazaro@colorado.edu

www.eldylazaro.com

IG: sust_ainable

Sep. 2024

See you next year! **E M E R G I N G E CONFERENCE** I AVACE TELES Nov. 4-7. 2025 Indianapolis, IN USA